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Motivation

● A trained neural network can be a powerful tool for
● Pattern recognition

● Classification

● Clustering

● Others…

● Scaling Deep Learning (DL) training is also a tool for
● Models that take a very long time to train (and have a very large training 

dataset)

● Increasing the frequency at which models can be retrained with new or 
improved data

● This talk reviews scaling DL training and topics that can be 
important to successfully applying it
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Agenda

● HPC Attributes of Deep Learning

● TensorFlow on Theta

● Parallelization Methods for TensorFlow

● Convergence Considerations at Scale

● CPE ML Plugin Example
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HPC Attributes of Deep Learning



ALCF SDL Workshop 2018 Cray Inc. © 2018

HPC Attributes

● DL training is a classic high-performance computing 

problem which demands:

● Large compute capacity in terms of FLOPs, memory capacity and 

bandwidth

● A performant interconnect for fast communication of gradients and 

model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the 

compute fed at scale

6



ALCF SDL Workshop 2018 Cray Inc. © 2018

● Data parallel training divides a global mini-batch of examples across 
processes

● Each process computes gradients from their local mini-batch

● Average gradients across processes

● All processes update their local model with averaged gradients (all processes 
have the same model)

● Not shown is the I/O activity of reading training samples (and possible 
augmentation)

Data Parallelism - Collective-based Synchronous 
SGD

Compute 

intensive

Communication 

intensive

Typically not 

much compute
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Why do we want to scale?

● Deep Network Training
● We can strong scale training time-to-accuracy provided

● Number of workers (e.g., # nodes) << number of training examples

● Learning rate for particular batch size / scale is known

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule

● momentum

● batch size

● Evolve topologies if good architecture is unknown (common with novel 
datasets / mappings) 
● Layer types, width, number filters

● Activation functions, drop-out rates

8
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TensorFlow on Theta
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TensorFlow

● Developed by Google

● Most popular DL framework

● Large open source community

● APIs for
● Python

● C++

● Go

● Java

● Optimized for CPU and GPU architectures
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TensorFlow on Theta

● Python 2.7 and 3.6 builds of TensorFlow prepared for this 
workshop

● TensorFlow 1.5 with MKL-DNN optimizations for KNL

● Python 2.7 setup
module load cray-python/2.7.13.1

export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs

python –c “import tensorflow as tf”

● Python 3.6 setup
module load cray-python/3.6.1.1

export PYTHONUSERBASE=/lus/theta-fs0/projects/SDL_Workshop/mendygra/pylibs

python –c “import tensorflow as tf”
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Performance Tuning Tips for KNL
● Recommended MKL settings

● OMP_NUM_THREADS=62

● KMP_BLOCKTIME=0 (30 sometimes good too)

● KMP_AFFINITY=“granularity=fine,compact,1,0”

● TensorFlow thread settings

● num_inter_threads=3

● num_intra_threads=$OMP_NUM_THREADS

● Use NCHW data format (NHWC is TensorFlow default)

● Use the Dataset API to pipeline reading and preparing of input samples

● I/O bandwidth requirements for Dataset API (using dedicated preprocessing threads) can be estimated with

● B/s/node = (#processes/node) x (local mini-batch size) x (B/sample) / (batch time [s])

● Use lustre striping on sample data directory, for example:

● lfs setstripe –c 16 [samples directory]

● cp [dataset files] [samples directory]
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Parallelization Methods for DL
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Parallelization Techniques

● Data Parallelism
● As described earlier, divides global mini-batch among processes

● Two methods for this:
● Synchronous: single model (possibly replicated across all processes) updated with 

globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out 
of sync from one another.  Processes each have their own model that may or may 
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes

● Activations communicated between processes

● This talk will focus on synchronous data parallel approach 
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Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API

● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes

● hostnames and ports for all parameter server processes (see next slide)

● # of workers

● # of parameter server processes

● Chief process of workers
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Distributed TensorFlow

● Number of parameter 
servers (PS) processes to 
use is not clear
● Too few results in many-to-

few comm pattern (very bad) 
and stalls delivering updated 
parameters

● Too many results in many-to-
many comm patter (also bad)

● Users typically have to pick 
a scale and experiment for 
best performance
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Distributed TensorFlow Scaling on Cray XC40 - KNL
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MPI-based Data Parallel TensorFlow

● The performance and usability issues with distributed TensorFlow
can be addressed by adopting an MPI communication model

● TensorFlow does have an MPI option, but it only replaces point to 
point operations in gRPC with MPI
● Collective algorithm optimization in MPI not used

● Other frameworks, such as Caffe and CNTK, include MPI 
collectives

● An MPI collective based approach would eliminate the need for PS 
processes and likely be optimized without intervention from the 
user
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Scalable Synchronous Data Parallelism

input

model

input

model

input

model
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. 
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ΔP
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● Note there are no PS processes in this model

● Resources dedicated to gradient calculation
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Uber Horovod
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● Uber open source addon for TensorFlow only that 
replaces native optimizer class with a new class
● Horovod adds an allreduce between gradient computation 

and model update in this class

● New Python class includes NCCL and MPI 
collective reductions for gradient aggregation

● https://github.com/uber/horovod

● No modifications to TensorFlow source required
● User modifies Python training script instead

https://github.com/uber/horovod
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Cray Programming Environment Machine Learning 
Plugin (CPE ML Plugin)
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● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other frameworks
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or Tensors

● Like Horovod does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL workloads
● Optimized for Cray Aries interconnect and IB for Cray clusters

● Tunable through API and environment variables

● Supports multiple gradient aggregations at once with thread teams
● Useful for Generative Adversarial Networks (GAN), for example
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Horovod / CPE ML Plugin – Throughput Scaling
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Convergence Considerations at 
Scale



ALCF SDL Workshop 2018 Cray Inc. © 2018

Problems in Scaling DL Training

● Increasing workers increases the global batch size
● This reduces the number of updates to the model (iterations) per 

epoch (full pass through dataset)

● Can require more iterations to converge to same validation accuracy 
for models trained at smaller batch sizes

● Large-batch (LB) training can have different convergence 
properties than Small-batch (SB) training
● LB training can lead to models which fail to generalize to validation 

datasets
● LB training error can look similar to SB training error, but validation 

error fails to improve

24
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Problems in Scaling DL Training

● Possible reasons for the observed failure to generalize 

using large batch methods [2]:

● The model overfits

● Optimization is attracted to saddle-points

● Loss of the explorative properties gained with small batches

25
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Observations on Scaled Learning Rates
● Step 1) Start with common initial learning rate for selected optimizer (from Keras documentation)

● Adam -> 0.001

● RMSProp -> 0.001

● SGD -> 0.01

● Adagrad -> 0.01

● Adadelta -> 1.0

● Step 2) Multiply learning rate by N or Sqrt(N)
● N is the number of parallel processes

● Discussed in further detail on next slide

● Step 3) Decay learning rate during training (e.g., exponential decay)
● Setup a learning rate schedule using your initial learning rate as the starting state

● Learning rate typically lowered periodically or continuously

● Helps improve final accuracy

● Likely very important to reduce learning rate over time when initial learning rate scaled large

● Step 4) Run it
● Train and observe loss or training accuracy, check validation accuracy

● Adjust initial learning rate up if learning too slowly or down if model is not learning

● Repeat steps as needed to improve convergence and accuracy

26
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Learning Rate Scaling Rules

● Sqrt Scaling Rule: 

● When the local minibatch size is multiplied by 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠, multiply the learning rate by 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠. 

𝜂𝑖𝑛𝑖𝑡 = 𝜂𝑖𝑛𝑖𝑡 ∗ 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠

● Error on the mean only improves as sqrt(N_workers)

● Linear Scaling Rule: 
● When the minibatch size is multiplied by N, multiply the learning rate by N. 

𝜂𝑖𝑛𝑖𝑡 = 𝜂𝑖𝑛𝑖𝑡 ∗ 𝑁𝑤𝑜𝑟𝑘𝑒𝑟𝑠

● Naïve rule for scaling learning rate in distributed training but it works for some problems

● More attractive (when it works) because it shouldn’t require many additional iterations to reach same 
accuracy
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Rules of Thumb

● 3 Remarks from Facebook Paper:
● “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour” [1]

● Momentum: If using momentum with learning rate absorbed into the update tensor, apply 
momentum correction described in the paper
● Tensorflow:

● RMSProp momentum needs corrections

● GradientDescentOptimizer can ignore correction

● Anything using momentum, inspect further

● Batch-normalization
● Consider your local batch-size to be a hyper-parameter of the batch-normalization, so it affects the 

loss computation locally, and the node efficiency

● Gradient Aggregation: Normalize the per-worker loss by global minibatch size, not local
● Already handled by parallel methods like gRPC, Horovod and CPE ML Plugin

28
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Other Rules of Thumb 

● Optimizers can behave in unexpected ways as scale 
increases
● At small scale (e.g., < 100 workers) errors from assumptions in 

common optimizers also probably small

● Learning rate scaling rules and schedule may be sufficient

● At larger scales optimizers can break down and require 
corrections

● Improved optimizers are likely required for very large global batch 
sizes

29
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Warm-Up Iterations

● Linearly scaled learning rate 
causes most problems early 
in training [3]
● Design a warm-up set of 

iterations to reduce these errors

● Once training settled on good 
path, transition to larger 
learning rate

● Can also use different 
optimizers for each phase [5]

● Allows you to use 
momentum and weight 
decay

This 2 is a mistake, should be 1

RMSProp -> momentum SGD given in [5]

30
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Layer-wise Adaptive Rate Scaling (LARS)

● Layer-wise learning rate

● Allows you to use 
momentum and weight 
decay

● Demonstrated no loss 
of accuracy on 
ResNet50 with global 
batch size of 32K
● Could be 1024 nodes 

each with local batch size 
of 32

● See reference [1]
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Useful References

[1] LARGE BATCH TRAINING OF CONVOLUTIONAL NETWORKS --
https://arxiv.org/pdf/1708.03888.pdf

[2] ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP 
AND SHARP MINIMA -- https://openreview.net/pdf?id=H1oyRlYgg

[3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour --
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf

[4] Train longer, generalize better: closing the generalization gap in large batch 
training of neural networks -- https://arxiv.org/pdf/1705.08741.pdf

[5] Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 
Minutes -- https://arxiv.org/pdf/1711.04325.pdf
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CPE ML Plugin Example
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Training Script Modifications

● Both Horovod and CPE ML Plugin require some 
modifications to a serial training script

● For the CPE ML Plugin the changes are
● Importing the Python module

● Initialize the module

● Possibly configure the thread team(s) for specific uses

● Broadcast initial model parameters

● Incorporate gradient aggregation between gradient computation and 
model update

● Finalize the Python module
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MNIST Example

● Dataset of handwritten digits from 0-9

● Simple CNN can be used to identify handwritten digits

● This example is adapted from the TensorFlow official MNIST 
example

● https://github.com/tensorflow/models/tree/master/official/mnist

● Modified script included with CPE ML Plugin
● module load craype-ml-plugin-py2/1.1.0

● less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py

35
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CPE ML Plugin - Import

36

● Access the Python API by importing the module
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CPE ML Plugin - Initialization

● Compute the number of trainable variables in the 

model

● Required for the CPE ML Plugin to pre-allocate needed 

communication buffers

● Example sets up a single thread team with one thread
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CPE ML Plugin – Team Configuration

● Set the maximum number of steps (mini batches) to 

train for

● Verbose output every 200 steps

● Also set output path to rank-specific location
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CPE ML Plugin – Broadcast Initial Model

● Broadcast initial model parameter values from rank 0 

to all other ranks

● Then assign broadcasted values locally
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CPE ML Plugin – Gradient Aggregation

● Perform gradient averaging across all ranks between 

local gradient calculation and model update
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CPE ML Plugin – Finalize

● After all training steps are complete clean up data 

structures and MPI

41
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CPE ML Plugin – Execution Example

● Once the script is modified job launch is just like a typical 
MPI job
● Example assumes user has TensorFlow installed in PYTHONPATH or 

PYTHONUSERBASE

module load cray-python

module load craype-ml-plugin-py2/1.1.0

export OMP_NUM_THREADS=62

aprun -n4 -N1 -cc none -b python \

$CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py \

--enable_ml_comm \

--data_dir=/lus/theta-fs0/projects/SDL_Workshop/mendygra/mnist_data \

--model_dir=[train dir]
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CPE ML Plugin – Example Batch Scripts

● Sample batch scripts for tf_cnn_benchmarks
● Adapted from

● https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

● A suite of CNNs are included

● Batch scripts are available for you to try in:
● Python 2: /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py2.batch

● Python 3: /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py3.batch

mkdir /lus/theta-fs0/projects/SDL_Workshop/[username]

cd /lus/theta-fs0/projects/SDL_Workshop/[username]

cp /lus/theta-fs0/projects/SDL_Workshop/mendygra/cpe_plugin_py2.batch .

qsub cpe_plugin_py2.batch

● Please refer to CPE ML Plugin manpage for more details on usage
● man intro_ml_plugin
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Thank You!

Questions?


